A Review on Mucoadhesive Microspheres as an Optimised Targeted Drug Delivery System
Sandhya Sharma¹, Moumita Barman⁴*, Neelam Singh¹, Abhishek Bhardwaj², Rosaline Mishra¹, Monika Singh¹ and Prasoon K Saxena¹

¹Assistant Professor, I.T.S. College of Pharmacy, Ghaziabad, India.
²Radha Govind Institute of pharmacy, Akroli, Moradabad, U.P, India.

Abstract
Mucoadhesive microspheres play an imperative job in the drug delivery system due to their small size and other effective properties. It is utilized as a carrier for medication. Mucoadhesive microspheres delayed the residence time at the site of utilization or absorption and facilitate an intimate contact with the underlying absorption surface and in this way enhanced therapeutic performance of medications. It can also enhanced bioavailability and efficient absorption of the medications because of a high surface to volume proportion, a considerably more intimate contact with the mucus layer, controlled and sustained release of medication from dosage form and specific targeting medications to the retention site. These can be created for oral, buccal, nasal, ocular, rectal and vaginal for either systemic or local effects.

Introduction

Mucoadhesion or bioadhesion can be characterized as the state in which two material (something like one of which is biological in nature) are held together for a delayed time period and by means of interfacial force. Mucoadhesive dosage form might be intended to delayed the retention time at the site of application, giving a controlled rate of medication discharge for enhanced therapeutic outcome[1,2].

Microspheres are comprised of grouped polymers and are one of the novel medication conve, yance framework which posses several application[3]. Microspheres can embody numerous sorts of medications including small particles, proteins, and nucleic acids and are easily administered through a syringe needle. They are for the most part biocompatible, can give high bioavailability, and are capable of sustained release for long periods of time. Microspheres, referred to as microparticles which are extending from 1μm to 1000μm and are spherical in shape. These are comprised of either synthetic polymer or natural polymer[4]. Microspheres poses possibility to be utilized for targeted and controlled/extended arrival of medication, yet fusing mucoadhesive properties to microspheres will besides enhance bioavailability and absorption of the medications[5,6]. Mucoadhesive microspheres get adhere to the mucosal surface and discharge medicament for delayed time and give better medication absorption[7].

- Decreases the recurrence of daily administration and in this manner enhance the patient consistence.
- The utilization of particular bioadhesive particles considers conceivable focusing of specific sites or tissues, for., eg., the gastrointestinal (GI) tract.
- Because of adhesion and intimate contact, the definition remains longer at the conveyance site enhancing API bioavailability utilizing lower API concentration for disease treatment.
- Offers a brilliant route, for the foundational conveyance of medications with high first-pass digestion, there by offering a more noteworthy bioavailability.
- Uniform and wide dispersion of drug all through the gastrointestinal tract which enhances the drug retention.
- Prolonged and sustained arrival of drug and Maintenance the remedial plasma drug concentration.
- Drugs which are unstable in the acidic condition are destroyed by basic condition of digestive tract can be directed by this course e.g. buccal, sublingual, vagina[8-10].

Advantages of Mucoadhesive Microsphere

Factor Affecting Mucoadhesion[11]

Corresponding Author: Moumita Barman, Assistant Professor, I.T.S. College of Pharmacy, Ghaziabad, India. E-Mail: moumitabarman@its.edu.in

<table>
<thead>
<tr>
<th>Environmental Related factor</th>
<th>Physiological Related factor</th>
<th>Polymer Related Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Strength</td>
<td>Mucin turnover</td>
<td>Spatial conformation</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>Degree of hydration</td>
</tr>
<tr>
<td>Selection of the model substrate surface</td>
<td></td>
<td>Molecular weight</td>
</tr>
<tr>
<td>Initial contact time</td>
<td></td>
<td>Concentration of active polymer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chain flexibility of polymer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Swelling</td>
</tr>
</tbody>
</table>

Method of Preparation

Ionotropic gelation Method
Microspheres are set up by dissolving the gel-type polymers, for example, alginate, in a watery arrangement pursued by suspending the active ingredient in the blend and extruding the arrangement through needle to create micro droplets which fall into a solidifying arrangement containing calcium chloride under mixing at low speed. Divalent calcium particles present in the solidifying arrangement crosslink the polymer, framing gelled microspheres[12].

Solvent Evaporation Method
In this procedure the drug is disintegrated in polymer, which was previously dissolved in chloroform and the subsequent arrangement is added to the fluid stage containing 0.2 % sodium of PVP as emulsifying agent, the above blend was agitated at 500 rpm then the drug and polymer (eudragit) was changed into fine bead which set into inflexible microspheres by solvent evaporation and afterward gathered by filtration and washed with demineralised water and dried up at room temperature for 24 hours[13].

Single Emulsion Technique
In this procedure the polymer and drug are broken up or scattered in watery medium pursued by dispersion in natural medium (e.g. oil) results in development of globules, and after that the scattered globule are cross connected by both of heat or by utilizing the chemical cross-linkers. The substance cross-linkers utilized are formaldehyde, glutaraldehyde, diacid chloride etc[14].

Phase Inversion Method
The technique includes expansion of drug into dilute polymeric arrangement in methylene chloride and the resultant blend is poured in to an unstirred bath of strong non dissolvable, oil ether, in a proportion of 1: 100. Microspheres delivered are then elucidated, washed with oil ether and air dried[15].

Complex Coacervation
In this method when arrangements of two hydrophilic colloids were blended, result into a partition of liquid precipitate and the coating material stage, arranged by dissolving immiscible polymer in a reasonable vehicle and the core material is scattered in a solution of the coating polymer under steady mixing. Microencapsulation was accomplished by using one of the strategies for phase separation, that is, by changing the temperature of the polymer arrangement; by changing the pH of the medium, by including a salt or an inconsistent polymer or a non-dissolvable to the polymer arrangement; by actuating a polymer polymer interaction. For the most part coating is solidified by thermal cross linking or desolvation systems, to form a self sustaining microsphere[16].

Theories of Mucoadhesion[17]

Electronic theory
As indicated by this hypothesis an electrical twofold layer is shaped on the exchange of the electrons among the mucoadhesive and mucosal film.

Wetting Theory
This hypothesis is pertinent for fluids, proposes that the lower the contact edge of fluid on substrate surface there will be more affinity for adhesion.

Adsorption theory
According to this hypothesis the mucoadhesive get adsorbed on the mucosal surface by intermolecular powers, viz. Vander Waal's powers, hydrogen bonding and so forth.

Diffusion Theory
This hypothesis shows the framing of a system structure among the mucoadhesive and the mucosal surface by dispersion of the polymers chains present on the mucoadhesive surface.

Mechanical Theory
Explains the arrangement of an interlocked structure by the dissemination of the fluid adhesive into the smaller scale breaks and anomalies present on the mucoadhesive substrate bringing about mucoadhesion.

Cohesive Theory
According to this hypothesis the marvels of mucoadhesion is for the most part because of the intermolecular connections among like-atoms.

Evaluation

Interaction study by TLC/FTIR
- IR spectroscopic studies: The IR spectra of the free drug and the microspheres are recorded.
- Thin layer chromatographic studies: The drug stability in the prepared microspheres can be tested by the TLC method.
- UV-FTTR (Fourier transform infra red): The drug polymer interaction and also degradation of drug while processing for microencapsulation can be determined by FTIR[1].
- Particle Size: particle size can be determined by optical microscopy method[19].
- **Surface Morphology**: The surface morphology can be determined by scanning electron microscopy(SEM) like shape and size[20].
Ex-Vivo Mucoadhesion Study

The Mucoadhesive property of the microspheres is evaluated on goat’s intestinal mucosa by using phosphate buffer, as per monograph. The weight of microspheres leached out at different intervals is measured. The % Mucoadhesion is calculated by the following equation:
\[
\% \text{ Mucoadhesion} = \frac{\text{weight of microspheres leached out}}{\text{weight of microspheres initially}} \times 100
\]

Future Challenges

Future difficulties of microspheres look brilliant especially in the zone of therapeutic field as a result of its wide range of use in sub-atomic science, e.g. microsphere based genotyping stage is utilized to identify six single nucleotide polymorphism, yttrium-90 microspheres is utilized to prevent tumor after liver transplantation and it’s advanced way in conveyance of immunizations and proteins.

Conclusion

In future by consolidating with different techniques Mucoadhesive microspheres can locate the central place in novel medication conveyance. Microsphere medicates conveyance framework gives chances to planning new controlled and prolonged discharged oral formulation. Assortment of chances offered by microspheres like protection and masking, decrease in disintegration rate, spatial focusing of the dynamic fixing. This methodology encourages diminish sedate focus at the site other than target organ or tissue, conveyance of small amounts of intense medications and assurance of labile compound when organization. Microspheres are perfect focusing on medication conveyance framework with high safety profile. The Mucoadhesive microsphere play a essential job in controlled and managed discharge activity, and are appropriate for colonic focusing on. It maintains the effective plasma concentration over delayed timeframe by extending the release of drugs. Mucoadhesive microsphere conveys the drug to a specific site for longer span, because of which the absorption of drug enhance and thus, the bioavailability of the drug will also enhance.

Conflict of Interest: None.

Reference

